
xc

The procedure XC computes the digital cross-correlation of two (equal-length) one-
dimensional arrays, and determines the maximum of the cross-correlation function
by fitting a low-order polynomial or a Gaussian to the central peak. The error is
estimated from the covariance matrix of the standard errors in the fitting parame-
ters. The code works in pixel or in Fourier space. Upon request, a plot is shown to
illustrate the least-squares fittings.

Syntax

XC,y1,y2,s1,s2,delta,e delta[,nrange=variable][,npoints=variable] [,order=variable]

[,/plot][,/gauss][,/fourier]

Return Value

XC returns the location of the cross-correlation maximum and an estimate of its
uncertainty. Both in units of pixels.

Arguments

y1 - (float array) 1st array

y2 - (float array) 2nd array

s1 - (float array) uncertainties for 1st array

s2 - (float array) uncertainties for 2nd array

Keywords

� nrange - (integer) half range of the shifts in the cross-correlation integral

� npoints- (integer) number of pixels around the highest-valued pixel to enter
the fit. (default: 7)

� order - (integer) order of the polynomial: 2 or 3 (default: 2 = 2nd order) A
gaussian can also specified setting order

�
0 (or by using the keyword ’gauss’.
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� plot - produces a plot illustrating the model fitting

� gauss - use a Gaussian instead of a polynomial to model the peak of the cross-
correlation function

� fourier - compute the cross-correlation in Fourier space (nrange is n elements(y1)/2-
1 regardles of input nrange)

� extras - extra plotting keywords can be used and will be passed along to plot

Discussion

The cross-correlation of two arrays (o spectra) T and S of equal and even number
of elements � is defined as a new array C with

� � � ��� � � 	 � 
 � � � � 
� � (1)

where � runs from � to � . If the spectrum T is identical to S, but shifted by an an
integer number of pixels � , the maximum value in the array C will correspond to
its element � � � � �� . Cross-correlation can be similarly used to measure shifts
that correspond to non-integer numbers. In this case, finding the location of the
maximum value of the cross-correlation function can be performed with a vast
choice of algorithms.

Another decision that needs to be made is related to the pixels that are used in com-
puting

� �
. If the arrays T and S have equal size, the number of elements available

for the calculation in Eq. 1 will be reduced as the index departs from � � �� ; the
indices will exceed the array boundaries. It is convenient then to keep the number
of pixels constant and equal to the maximum, � , for all values of � , by filling the
missing values of the second array (S) with those in the other extreme of the array.
Thus, we will use the entire array T as originally arranged, but


 �
= 
 � � �

, for � � � , and
 �
= 
 � � � , for � � � .

(2)

This is equivalent to assume that the input array S is a discrete version of a periodic
function which repeats itself every � pixels. With this choice, Eq. 1 is analogous
to the discrete correlation of two periodic functions (Brigham 1974).

The discrete cross-correlation of two periodic functions 	 and 
 , a third periodic
function

�
, transforms into a product in Fourier space� � � � � � � 	 � � � � 
 � � (3)

where the superscript � indicates the complex conjugate. Naturally, the same ex-
pression holds for our arrays C, T, and S. While the calculation of

� �
for all values
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of � using Eq. 1 requires � �
multiplications and additions, working in Fourier

space may speed up the calculation dramatically, as fast Fourier transforms can be
calculated with a number of operations proportional to � � � � � � .

This discussion of the cross-correlation function is based in pixel space (� ), but
everything applies directly to velocity space (� ) by sampling the spectra with uni-
form steps in � � � � , or � � � � . Our case of interest is when the spectra correspond
to different observations of the same object or very similar objects. Intrinsic differ-
ences between ’template’ and ’object’ are therefore negligible and random errors
are expected to dominate. The errors in the cross-correlation function (see Eq. 1),
assuming errors in the input spectra are uncorrelated, can be written (e.g., Mur-
doch & Hearnshaw 1991, Statler 1995)

� �� 	 � � � � � � � �� 	 �� � � � 
 � � � � � 
 �� � � � � � 	 � � 
 (4)

Considering correlations will add two more terms to the right-hand side of Eq. 4
involving the covariances among the fluxes’ uncertainties: a term

� �� �
� � � � � 	 � 	 � � � 
 � � � � 
 � � � � � 
 � � � 
 � � � � � 	 � � 	 � � � (5)

that accounts for correlations across frequencies in any given spectrum, and a term

� �� 	 � 
 � � � � � 	 � � 
 � � � � � (6)

that describes correlations across spectra. In realistic situations, the finite width of
the point-spread function will make non-zero the correlations between neighbor-
ing frequencies; the correlation matrix will be block diagonal. Correlations at any
given frequency across spectra are also likely (e.g. a bad CCD column), but note
that the correlation matrix is then strictly diagonal, and therefore only

� 

will be

affected. XC neglects correlations across frequencies or spectra, using Eq. 4.

We use a simple model to determine the maximum of the cross-correlation func-
tion. The parameters of the model are determined by � �

-square fitting to � � data
points near the maximum (see, e.g., Press et al. 1986), and the covariance matrix of
the standard errors of the parameters U=[U

� � ] is estimated by inverting the curva-
ture matrix � � � � � � � � � � � � � � (7)

which is approximated

� � � � � ��� � � �� ��
� � � � � �� � � � � � � � �� � � 
 (8)
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Gaussian

If we model the cross-correlation peak with a Gaussian profile

� � � � � � � � � � � � � � � � � � � � (9)

where � � � � � �
� � � (10)

the derivatives are� � � � � �� � � � �
� � � � � �� � � � � � �� � � 	 
 � � 	 � � � � � �� � � � � � � �� � � � � � � � 
 � � (11)

where � � � is the Kronecker delta. These can be used in Eq. 8 to compute the cur-
vature matrix, and finally (Eq. 7) the covariance matrix [U

� � ]. The center of the
Gaussian is at � � � � � � �

, and the variance is � � � � � � � � � � � �
.

Second order polynomial

If we model the cross-correlation peak with a polynomial

� � � � � � � ��� � � � � � � � �
(12)

of order � � �
, a maximum will exist when

� � � �
and its location is where the

first derivative
� � � � � cancels out

� � � � � � � �� � � � (13)

The curvature matrix has in this case a simple expression

� � � � �� �
� � � � ��
� �� 
 (14)

and the uncertainty in the maximum location can be calculated by linear error
propagation

� � � � � � � � � � � ��� � � � � � � � �� � � � � � � � � � ��� � � � � ��
� � � � � � � � � � �� � � � � � � � � �� � � � � � � (15)

� �� � �� � � � � � � ��� �� � � � � � � �� � �� � � �

 (16)
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Third order polynomial

This corresponds to Eq. 12 for � � 
 . The two roots of
� � � � � are

� � � � � � �
 � � (17)

where
� � � � �� � 
 � � � �

. To avoid large roundoff errors when
� � � � � � ��

, we can
define � � � � �� � � � � (18)

and rewrite the solutions (Press et al. 1998)

� � � � � � �

 � � � � � � � � �� � �


 (19)

Once we have identified which one we are interested in, the uncertainty can again
be derived by substituting in Eq. 15 the non-zero terms

� � �� � � � � �
� � � � � � � � � �� � � � � �� � � � � � 
 � � � �

� � � � � � � �� � �� � � � � � �� �

 � � � � � � � � � � �� � � � � �� � � � � �

� � �� � � � � � � �
� � � � � � � � � � � �


 � �� � � � �� � � � � 
 � ��� � � � � � � � � � 
 (20)
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Example

Cross-correlation of two gaussians of the same width (� � �
pixels), but shifted by

20 pixels, and measured with a signal-to-noise of 100. The default is to use a 2nd-
order polynomial to fit 7 data points around the maximum of the cross-correlation
peak:
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IDL� x=findgen(100)
IDL� y=exp(-((x-50.)/sqrt(2.)/7.)ˆ 2)
IDL� y2=exp(-((x-70.)/sqrt(2.)/7.)ˆ 2)
IDL� xc,y,y2,y/100.,y2/100.,delta,edelta,/pl
IDL� print,delta,edelta

-20.000000 0.061816146

Version History

C. Allende Prieto, McDonald Observatory, initial version coded, November 2004

Improved error calculation added in October 2006

Gaussian model added in December 2006

See Also
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